In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model.
نویسندگان
چکیده
Strategies for the prediction of in vivo drug clearance from in vitro drug metabolite kinetic data are well established for the rat. In this animal species, metabolism rate-substrate concentration relationships can commonly be described by the classic hyperbola consistent with the Michaelis-Menten model and simple scaling of the parameter intrinsic clearance (CL(int) - the ratio of V(max) to K(m)) is particularly valuable. The in vitro scaling of kinetic data from human tissue is more complex, particularly as many substrates for cytochrome P450 (CYP) 3A4, the dominant human CYP, show nonhyperbolic metabolism rate-substrate concentration curves. This review critically examines these types of data, which require the adoption of an enzyme model with multiple sites showing cooperative binding for the drug substrate, and considers the constraints this kinetic behavior places on the prediction of in vivo pharmacokinetic characteristics, such as metabolic stability and inhibitory drug interaction potential. The cases of autoactivation and autoinhibition are discussed; the former results in an initial lag in the rate-substrate concentration profile to generate a sigmoidal curve whereas the latter is characterized by a convex curve as V(max) is not maintained at high substrate concentrations. When positive cooperativity occurs, we suggest the use of CL(max), the maximal clearance resulting from autoactivation, as a substitute for CL(int). The impact of heteroactivation on this approach is also of importance. In the case of negative cooperativity, care in using the V(max)/K(m) approach to CL(int) determination must be taken. Examples of substrates displaying each type of kinetic behavior are discussed for various recombinant CYP enzymes, and possible artifactual sources of atypical rate-concentration curves are outlined. Finally, the consequences of ignoring atypical Michaelis-Menten kinetic relationships are examined, and the inconsistencies reported for both different substrates and sources of recombinant CYP3A noted.
منابع مشابه
Review IN VITRO-IN VIVO SCALING OF CYP KINETIC DATA NOT CONSISTENT WITH THE CLASSICAL MICHAELIS-MENTEN MODEL
Strategies for the prediction of in vivo drug clearance from in vitro drug metabolite kinetic data are well established for the rat. In this animal species, metabolism rate-substrate concentration relationships can commonly be described by the classic hyperbola consistent with the Michaelis-Menten model and simple scaling of the parameter intrinsic clearance (CLint 2 the ratio of Vmax to Km) is...
متن کاملComparing Logistic and Michaelis-Menten Multiphasic Models for Analysis of in vitro Gas Production Profiles of some Starchy Feedstuffs
Two multi-phasic models (logistic (LOG) and Michaelis-Menten (MM)) with three sub-curves were used to describe gas production kinetics of corn (CG), barley (BG), wheat (WG) and triticale (TG) grains. In each model sub curve, 1 describes the gas production caused by fermentation of the soluble fraction, gas production caused by fermentation of the non-soluble fraction is described in sub curve 2...
متن کاملDetermination of Kinetic Parameters for Catalytic Isomerization of Glucose to Fructose by immobilized Glucose Isomerase in an Aqueous-Ethanol Medium
Catalytic isomerization of glucose to fructose by immobilized glucose isomerase in an aqueous-ethanol medium was studied. Using Michaelis-Menten equation and Haldane relationship, the main kinetic parameters were determined: Kmf, Vmf, Kmr, Vmr. By comparing the aqueous-ethanol medium with an aqueous solution, the measured values of Kmr and Kmf were increased in the aqueous-ethanol solution, whi...
متن کاملDetermination of Kinetic Parameters for Catalytic Isomerization of Glucose to Fructose by immobilized Glucose Isomerase in an Aqueous-Ethanol Medium
Catalytic isomerization of glucose to fructose by immobilized glucose isomerase in an aqueous-ethanol medium was studied. Using Michaelis-Menten equation and Haldane relationship, the main kinetic parameters were determined: Kmf, Vmf, Kmr, Vmr. By comparing the aqueous-ethanol medium with an aqueous solution, the measured values of Kmr and Kmf were increased in the aqueous-ethanol solution, whi...
متن کاملIn vivo and in vitro metabolism studies of glaucine, a new herbal high by GC-MS, LC-MS, LC-HR-MS, and NMR techniques
The isoquinoline alkaloid Glaucine was described as an ingredient of legal highs and gained the interest of clinical and forensic toxicologist. So far, only few data on its pharmacokinetic properties was investigated. The aims of the present studies were to elucidate the metabolic fate of glaucine in vivo (rat) by GC-MS and LC-HR-MS techniques, to confirm the human main phase I metabolites in v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2000